GRE数学常用结论——四位分数

2022-05-23 15:43:18

  下面为大家介绍四位分数的新

  Quartile(四分位数):

  第0个Quartile实际为通常所说的最小值(MINimum);

  第1个Quartile(En:1st Quartile);

  第2个Quartile实际为通常所说的中分位数(中数、二分位分、中位数:Median);第3个Quartile(En:3rd Quartile);

  第4个Quartile实际为通常所说的最大值(MAXimum);

  我想大家除了对1st、3rd Quartile不了解外,对其他几个统计值的求法都是比较熟悉的了,而求1st、3rd是比较麻烦的。

  下面以求1rd为例:

  设样本数为n(即共有n个数),可以按下列步骤求1st Quartile:

  1.n个数从小到大排列,求(n-1)/4,设商为i,余数为j

  2.则可求得1st Quartile为:(第i+1个数)*(4-j)/4+(第i+2个数)*j/4

  例(已经排过序啦!):

  1).设序列为{5},只有一个样本则:(1-1)/4 商0,余数0

  1st=第1个数*4/4+第2个数*0/4=5

  2).设序列为{1,4},有两个样本则:(2-1)/4 商0,余数1

  1st=第1个数*3/4+第2个数*1/4=1.75

  3).设序列为{1,5,7},有三个样本则:(3-1)/4 商0,余数2

  1st=第1个数*2/4+第2个数*2/4=3

  4).设序列为{1,3,6,10},四个样本:(4-1)/4 商0,余数2

  1st=第1个数*1/4+第2个数*3/4=2.5

  5).其他类推!因为3rd与1rd的位置对称,这是可以将序列从大到小排(即倒过来排),再用1rd的公式即可求得:例(各序列同上各列,只是逆排):

  1.序列{5},3rd=5

  2.{4,1},3rd=4*3/4+1*1/4=3.25

  3.{7,5,1},3rd=7*2/4+5*2/4=6

  4.{10,6,3,1},3rd=10*1/4+6*3/4=7

  The calculation of Percentile

  设一个序列供有n个数,要求(k%)的Percentile:

  (1)从小到大排序,求(n-1)*k%,记整数部分为i,小数部分为j

  可以如此记忆:n个数中间有n-1个间隔,n-1/4就是处于前四分之一处,

  (2)所求结果=(1-j)*第(i+1)个数+j*第(i+2)个数

  特别注意以下两种最可能考的情况:

  (1)j为0,即(n-1)*k%恰为整数,则结果恰为第(i+1)个数

  (2)第(i+1)个数与第(i+2)个数相等,不用算也知道正是这两个数.

  注意:前面提到的Quartile也可用这种方法计算,

  其中1st Quartile的k%=25%

  2nd Quartile的k%=50%

  3rd Quartile的k%=75%

  计算结果一样.

  以上是有关备考新GRE数学常用结论:四位分数的介绍,小编认为备考新gre考试的考生,不需要浪费太多的时间在备考新gre数学上,因为数学使我们的强项,但是也不能疏忽大意,要不基本的数学知识词汇弄清楚,难点要攻克,争取把我们的优势发挥到最好。

热门院校